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Abstract— Currently, there are many approaches for vehicle
classification, but there is no specific study on automated, rear
view, and video-based robust vehicle classification. The rear
view is important for intelligent transportation systems since
not all states in the United States require a frontal license
plate on a vehicle. The classification of vehicles, from their rear
views, is challenging since vehicles have only subtle appearance
differences and there are changing illumination conditions and
the presence of moving shadows. In this paper, we present a
novel multi-class vehicle classification system that classifies a
vehicle into one of four possible classes (sedan, minivan, SUV,
and a pickup truck) from its rear view video, using physical and
visual features. For a given geometric setup of the camera on
highways, we make physical measurements on a vehicle. These
measurements include visual rear ground clearance, the height
of the vehicle, and the distance between the license plate and the
rear bumper. We call these distances as the physical features.
The visual features, also called appearance-based features, are
extracted using convolutional neural networks from the input
images. We achieve a classification accuracy of 93.22% and
91.52% using physical and visual features, respectively. Further-
more, we achieve a higher classification accuracy of 94.81% by
fusing both the features together. The results are shown on a
dataset consisting of 1831 rear view videos of vehicles and they
are compared with various approaches, including deep learning
techniques.

Index Terms— Convolutional neural networks, feature level
fusion, multi-frame analysis, physical features, visual features,
vehicle classification on highways/freeways.

I. INTRODUCTION

THE growth of population and economic prosperity has
led to a huge increase in the number of vehicles around

the world. This requires an increasing need for automated and
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Fig. 1. Examples of the direct rear view of moving vehicles.

efficient classification techniques for different vehicle cate-
gories for diverse applications such as automatic toll collec-
tion, efficient use of parking spaces, etc. Vehicle classification
systems should be robust to changes due to illumination, shad-
ows, occlusions, viewpoint changes, and other distortions etc.
Most approaches use computer vision and pattern recognition
based systems, which use feature extraction to detect and
classify a vehicle in still images and video streams. These
systems are the best solution for vehicle classification as
they are easy to install, relatively cheap, and provide direct
visual feedback and flexibility in mounting. However, this is
not a trivial task, the main problem being the selection of a
feature set that is discriminative and provides the best possible
classification of a vehicle type.

On an average 86.2 million cars are manufactured every year
with an average increase of 2.75% every year since 2010 [1].
This leads to an increase in the aesthetic similarity among
different vehicle models. A human subject can identify the
class of a vehicle with a quick glance of digital data but to
accomplish this with a computer is not as straight forward.
Several problems such as handling shadows and occlusion,
robust tracking of moving vehicles, lack of color invariance,
etc. must be carefully considered in order to design an effective
and robust automatic vehicle classification system which can
work in real-world conditions. Fig. 1 shows rear view images
of vehicles from our datasets.

The methods for vehicle classification can be broadly
split into two categories: discriminative and generative.
Discriminative classifiers learn the decision boundary between
different classes, whereas generative classifiers learn the
underlying distribution of a given class. In this paper, we pro-
pose a discriminative multi-class vehicle classification system
that classifies a vehicle using physical and visual features,
given its direct rear view, into one of four classes: Sedan,
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Fig. 2. Comparison of VRGC between SUV and Minivan.

Pickup truck, SUV and Minivan. As of 2012, these four
classes constituted 233.76 million registered vehicles in USA,
which is approximately 93.07% of the total registered vehicles
in USA [2].

Physical measurements such as the computed height,
the visual rear ground clearance (VRGC) of a vehicle and
distance between the bottom edges of the license plate and the
rear bumper are used. These distances are estimated in inches
and we call them as the physical features. Generally, ground
clearance of a vehicle is defined as the distance between the
lowest mechanical part of a vehicle and the flat ground surface.
However, for the given geometrical setup of a camera in our
application, the camera cannot see the bottom most mechanical
part of a vehicle. Therefore, we rename the traditional ground
clearance as Visual Rear Ground Clearance (VRGC) in this
paper. It is defined as the distance between the lowest visible
rear part of a vehicle (bottom edge of the rear bumper) and
the ground surface as viewed by a camera in a given geometric
setup installed above the road/freeway/highway along which
a vehicle is travelling.

The visual features are obtained by training a Convolutional
Neural Network (CNN) to classify vehicles from the rear view.
After training the CNN, we extract features from the final
fully connected layer and call these as visual or appearance-
based features. In our approach, we automatically compute the
physical and visual features from a video and fuse them using
SVM for classifying a vehicle. The fused feature vector con-
sists of the VRGC, height of a vehicle, the distance between
the license plate and rear bumper and features extracted by
the CNN.

It is to be noted that VRGC is a novel and important feature.
Following are the important characteristics of VRGC:

• Visual differences between a SUV and minivan from the
rear view are quite subtle. VRGC is robust in differen-
tiating a SUV from a minivan in rear view videos of a
vehicle as shown in Fig. 2.

• Majority of the freeways/highways in the United States
have cameras that look at the rear view of vehicles,
because frontal license plates are not required in all
states. Therefore, classification techniques that use the
frontal/side profiles of a vehicle will not be applicable.

• VRGC is scale invariant and it is effective in perform-
ing rear view based classification with already existing
freeways/highways cameras, thus eliminating the need for
significantly new hardware.

In summary, this paper develops a multi-class rear view
video vehicle classification system which classifies vehicles
into four classes namely: sedan, pickup truck, SUV and
minivan. It introduces a novel feature called Visual Rear
Ground Clearance. It computes physical and deep learning-
based visual features and fuse them together for classification.
It validates the results with 1,831 real-world vehicle rear view
videos.

This paper is organized as follows. Section II highlights the
related work and the contributions of this paper. The technical
approach is explained in Section III. Experimental results are
shown and discussed in detail in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORK AND OUR CONTRIBUTIONS

Automated booths on freeways are widely used for toll
collection. These booths generally rely on reading the license
plate of a vehicle and retrieving the vehicle and driver informa-
tion from the Department of Motor Vehicles (DMV) records.
This method is prone to a failure for vehicle classification,
in the case of a license plate theft, if the detected license plate
is for a different class of vehicle. In 2014, the total number
of stolen motor vehicles was 689,527 and approximately one
out of every five stolen vehicles was due to license plate
theft [3]. The average value of a stolen vehicle in 2014
was $6,537. Integrating the rear view vehicle classification
along with reading the license plate can be used to improve the
accuracy of automated tollbooths and also help detect vehicle
theft.

A. Related Work

In the past, majority of the vehicle classification techniques
utilized the side profile information of a vehicle. The limitation
of this technique is that side profiles of vehicles are prone
to occlusions on multi-lane roads. Additionally, surveillance
cameras on freeways capture either the frontal or the rear view
of vehicles. This limits the use of side view classification in
real-world applications. A summary of the related works is
shown in Table I.

To the best of our knowledge, the only approaches focused
on rear view based classification were suggested by Bhanu
and his associates [18]– [21]. Kafai and Bhanu [18] used the
spatial information between landmarks of a vehicle (e.g. tail
lights and license plates) and a dynamic Bayesian network
for classification. Thakoor and Bhanu [19] used the variation
in structural signature as vehicles moved forward to classify
them. Thakoor and Bhanu [20] used a scale matching approach
for estimating the height of vehicles. They related the standard
dimension of the license plate with the number of pixels in
an image to perform scale matching. This approach requires
very accurate camera calibration and even the presence of
small amount of noise can cause large variations in the scale.
A key limitation of the approaches [18]– [20] is that they could
not distinguish between SUV and minivans because they look
visually very similar from the rear view.

Theagarajan et al. [21] were able to solve the prob-
lem of distinguishing between SUV and minivans from the
rear view. The authors estimated the Visual Rear Ground
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Fig. 3. Overall architecture of our approach.

TABLE I

SUMMARY OF THE RELATED WORKS. * INDICATES THAT

THE APPROACH IS NOT FULLY AUTOMATIC

Clearance (VRGC) for binary classification as either a Low
VRGC vehicle (sedan and minivan) or a High VRGC vehicle
(SUV and pickup truck).

B. Contributions of This Paper

Unlike the previous work as shown in Table I, the contri-
butions of this paper are:

(a) We propose a multi-class rear view vehicle classification
system given the vehicles direct rear view as shown in Fig. 1.
The main reasons for choosing the rear view are: First, vehicle
classification using the side view is prone to occlusion from
multi-lane traffic. Second, 19 states in the United States require
only the rear license plate, hence frontal view classification is
not suitable. Third, most of the cameras on freeways capture
the rear view of moving vehicles, hence side/frontal view
based classification techniques are not going to be widely
applicable in the real-world.

(b) We use the physical height of features along with
visual features that are computed using deep learning archi-
tectures for classifying a vehicle. This kind of fusion provides

improved performance and it has have never been used before.
The approach keeps the physical interpretation of height of
features in the image of a vehicle and it is not lost by carrying
out principal component or discriminant analysis for data
dimensionality reduction.

(c) The experimental results have been validated on three
datasets consisting of 1,831 rear view videos for four classes
of vehicles namely: sedan, minivan, SUV and pickup truck.
The deep learning network has been pre-trained on a database
of 650,000 images of vehicles and then fine-tuned on rear
view images. These results are shown with physical features
and visual features alone and after the fusion of these features.

This paper is an extension of the preliminary paper by
Theagarajan et al. [21] with significant advances in both theory
and experimentation and overlap of less than 20%. In this
paper, in addition, to the VRGC we estimate the height of
the vehicle and spatial distance between the bottom edges
of the license plate and rear bumper and fuse these features
along with the visual features from deep learning to classify
vehicles. Our approach does not require full camera calibration
and requires only the height at which the camera is installed,
depression angle and focal length of the camera as inputs in
order to estimate the height of the physical features.

III. TECHNICAL APPROACH

This section describes the technical approach on how a
vehicle is classified from the rear view video. First, the Region-
of-Interest (ROI) for a moving vehicle is extracted and the ROI
is processed to remove shadows followed by localization of
the license plate and rear bumper. Next, the height of physical
features is estimated using multi-frames.

The visual features are obtained by passing the processed
ROI through CNN and extracting the features from the final
fully connected layer. Finally, the extracted physical and visual
features are fused using SVM to classify vehicles into one
of the four classes. The complete proposed system is shown
in Fig. 3. The components of the system are described below.

A. Localization and Analysis of ROI

This subsection explains the steps for detecting the ROI of
a moving vehicle, processing the ROI to remove shadows and
localizing the license plate and rear bumper.
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1) Moving Vehicle Detection: In this paper a mixture
of Gaussian models is used for moving vehicle detection.
The R, G and B channels of the input color image are indi-
vidually modeled as Gaussian distributions. If a given pixel in
the current frame is within three standard deviations in the R,
G and B color planes, then it is considered to be a background
pixel, otherwise, it is a foreground pixel [22]. After scanning
all the pixels, the pixels that belong to the foreground are
cropped out. This results in an image containing the moving
vehicle and its associated shadow.

The shadow associated with the moving vehicle consists of
two separate parts: rear shadow and side shadow. The shadow
immediately below the rear bumper of a vehicle is called the
rear shadow, whereas the shadow on either the right or left side
of the vehicle is called the side shadow. We need to separate
these shadows [23] associated with the moving vehicle for two
main reasons. First, the rear shadow can be misidentified as
the rear bumper which will result in the incorrect estimation of
the VRGC. Second, we need to track the side shadow in order
to estimate the velocity at which the vehicle is travelling.

2) Removing the Side Shadow: All vehicles are designed
such that they are bilaterally symmetric around their cen-
tral vertical axis (reflection symmetry) from their rear view.
We exploit this symmetry property to separate the moving
vehicle from the side shadow.

We assume the axis of symmetry to be vertical based on the
orientation of the ROI. From this assumption, we can conclude
that the axis of symmetry corresponds to one of the columns
of the ROI. To estimate the axis of symmetry, we first estimate
edge magnitudes and orientation of edges using Gabor filters
given by:

g(x; y; θ; λ;ψ; σ ; γ)=ex p(
x

′2+γ 2 y
′2

2σ 2 )cos(2π
x ′

λ
+ψ) (1)

where, x’ = xcosθ + ysinθ and y’ = -xsinθ + ycosθ .
We use a bank of eight Gabor filters with orientation of
θ = 0◦, 22.5◦,…, 157.5◦. In equation (1) x and y are the
locations of the pixels in the image, λ is the wavelength,
θ is the orientation, γ is the aspect ratio and σ is the area
of the receptive field of the Gabor filter [24]. The values of
the parameters are given in Table II in section IV.

We apply surround suppression to the response of the Gabor
filter to remove the background texture in the ROI. The
surround suppression process checks if a small window W1
around the edge (x, y) of the Gabor filters response reappears
in a larger window W2 around the edge (x, y). If W1 reappears
in W2, then the edge (x, y) is assumed to be a background
texture and it is suppressed. Finally, we perform non-maximal
suppression to get the final set of edges.

Next, we use a voting scheme to estimate the axis of
symmetry. For any given column y of the image I with edge
magnitude H and orientation θ , the votes G are counted as

∑

∀x,y−,y+:(x :y+)∈I,(x :y−)∈I

G(x, y−, y+) (2)

G(x, y−, y+) =
{

min(Hx,y-, Hx,y+), i f θx,y- = θ ′
x,y+

0, otherwi se
(3)

Algorithm 1 Estimating the Axis of Symmetry
Input: Grayscale image of ROI
Output: Axis of symmetry (Column)
for y = 1 : width of the ROI
Initialize vote (y) = 0

for ε = 1 : min(y, width (ROI) - y)
for x = 1 : length of the ROI

y+ = y + ε
y- = y - ε
θ ′

x, y+ = π - θx, y-

if (θ ′
x, y+ = θx, y- )

vote (y) = vote (y) + min (Hx,y- ,Hx,y+)
end

end
end
return vote (y)

Fig. 4. Vehicle axis of symmetry from skewed rear view.

where,y+ = y + ε, y− = y − ε, θ ′
x,y = π − θx,y andε takes

values from 1 to min(y, width (I) - y). The column with
the maximum number of votes is assumed to be the axis of
symmetry. The algorithm for obtaining the axis of symmetry
is given below.

After estimating the axis of symmetry, we then select the
farthest pair of symmetrical edges as horizontal extremes of
the bounding box and crop the ROI. Anything protruding
out of this bounding box is assumed to be the part of the
side shadow. The output of this step is the vehicle with its
side shadow removed and rear shadow present below the
rear bumper. In order to evaluate the robustness of symmetry
detection algorithm, we tested it on images where the rear
view of the vehicle was skewed a little to the side. In Fig. 4
the rear view was skewed towards the right side and hence the
axis of symmetry shifted more towards the left side and it is
correctly detected.

3) License Plate Localization: We identify the region of
the license plate by performing morphological operations on
the integral image of the ROI. For a given location (x, y) in
the image, the integral image is computed as the sum of the
values above and to the left of (x, y). It is easy to detect square
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Fig. 5. (a) Vehicle with no shadow, (b) Integral image for bottom half of
the vehicle, (c) localized license plate.

and rectangular objects in an integral image, making it easy to
detect the license plate which is rectangular in shape. Based
on the ROI image, we can safely say that the license plate
is always located in the bottom half of the ROI, so for the
following steps, we will be using only the bottom half of the
ROI to localize the license plate.

After obtaining the integral image, we use Haar
wavelets [25] to detect the horizontal and vertical edges in
the integral image. We suppressed all the edges that have a
magnitude lesser than 0.5. This threshold was obtained after
experimentation. After obtaining the binary image, we dilate
the image using a straight horizontal line whose length is 3%
of the total width of the integral image. We further dilate it
with a square mask of length 5 pixels followed by erosion with
a square mask of 7 pixels. This gives us regions of blobs and
based on the properties of the license plate we filter out the
blobs. The blob with aspect ratio within the limits of 1.3 to
1.6, area greater than 2000 pixels and orientation within the
limits of +5◦ to -5◦ with respect to the x- axis is identified as
the region corresponding to the license plate. After identifying
the blob, we fill in the empty area of the blob to make it a
perfect rectangle. An example of the license plate detection is
shown in Fig. 5. In Fig. 5 the green lines indicate the bottom
half of the vehicle, Fig. 5(b) is the integral image for the
bottom half of the vehicle and Fig. 5(c) is the localized license
plate.

4) Removing the Rear Shadow: The symmetry detec-
tion algorithm described above does not remove the non-
symmetrical features present between vertical extremes.
In order to remove the rear shadow we observed that the
outer curvature of the tire on the side opposite to the side
shadow can be used to isolate the vehicle and the rear shadow.
This is achieved by analyzing the responses of Gabor filters
by locally scanning the area around the tire. We can safely
assume that the tires of all vehicles are present in the bottom
half of the ROI. Thus, we need to consider only the bottom
half of the ROI. We divide the bottom half of the ROI into
4 quadrants. This results in the left tire being present in the
third quadrant and the right tire in the fourth quadrant.

Based on the location of side shadow, we scan the quadrant
on the opposite side of the side shadow. For example, if the
side shadow was on the left side, we scan the fourth quadrant
and vice-versa. We chose the orientation of Gabor filter to be
N x 22.5◦ where N = 5 if we scan the third quadrant and
N = 3 if we scan the fourth quadrant as shown in Fig. 6(b).

Fig. 6. (a) Detected curvature of the right tire, (b) orientation of the Gabor
filter bank.

Fig. 7. Detected bottom edge of the rear bumper.

We chose the value of N by analyzing the curvature of the
tire for all the vehicles in our dataset. Finally, after detecting
the curvature, we crop the rear shadow that is present below
the curvature from the ROI. Fig. 6 shows an example of the
detected curvature of the right tire.

In Fig. 6 the side shadow was cropped from the left side of
the vehicle, hence we detect the curvature of the right tire in
the fourth quadrant as shown in Fig. 6(a). A drawback of this
approach is when both the tires of the vehicle are surrounded
by the rear shadow, which occludes the curvature of both the
tires. This situation occurs only when the source of light is
exactly in front of the vehicle and it occurs only for a very
short duration of time and hence it is neglected.

5) Identifying the Bottom Edge of the Rear Bumper: Look-
ing at the rear view of a vehicle, we observe that the bottom
edge of the rear bumper is always below the bottom edge of
the license plate and above the tires. By identifying the license
plate and curvature of the tire from the previous discussion,
we conclude that the bottom edge of the rear bumper lies in
the area between the bottom edge of the license plate and
the curvature of the tire. This observation helps us to narrow
down the search area for identifying the bottom edge of the
rear bumper. We perform histogram equalization to enhance
the contrast of the image and detect all the horizontal edges
within this search area using a Gabor filter at an orientation
of 180◦ as shown in Fig. 7. In Fig. 7(a), the yellow dashed
lines indicates the search area within which we need to detect
the dominant horizontal edges. Next, we use a straight-line
mask whose length is 3% of the total width of the ROI to
dilate this binary image, which results in closing all the small
gaps lying on the same row. Finally, the first longest line from
the bottom whose length is more than 75% of the total width
of the ROI is selected as the bottom edge of the rear bumper.
In Fig. 7, the red line is the identified bottom edge of the rear
bumper for the vehicle.
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Fig. 8. Parallel projection scene geometry.

B. Multi-frame Analysis for Computing Physical Features

In our approach, the physical features is the feature set
that consists of the height of the vehicle, VRGC and distance
between the bottom edges of the license plate and rear bumper.
In the following, we explain the procedure for estimating
the height of these features using a multi-frame approach.
Since vehicles are travelling down the traffic lane, for a small
duration of time we can safely assume that the velocity of the
vehicle is constant along the lane it is travelling and negligible
in the direction perpendicular to the lane. The geometry of
this scene is characterized as a parallel projection where the
projection plane is orthogonal to the camera image plane and
the road plane. This results in the road and camera image plane
to appear as lines. Fig. 8 shows the parallel projection scene
geometry.

The origin of the 2D camera coordinate system is located
at O, with the x-axis parallel to the road and the y-axis
perpendicular to the road. The camera is installed at a height h,
with focal length f and depression angle as θ with respect
to the x-axis. The image plane of the camera intersects with

x-axis and y-axis at Ox ≡
(

f

cosθ
, 0

)
and Oy ≡

(
0,

f

sinθ

)
,

respectively. Let Q be a point on a vehicle as seen from the
camera. The coordinates of the point Q at time t is (B(t), G).
Q is projected to Q’2D(t) on the line OxOy. Solving for Q’2D(t)
results in,

Q′
2D(t) =

(
f B(t)

B(t)cosθ + Gsinθ
,

G f

B(t)cosθ + Gsinθ

)
(4)

The projection of Q’2D(t) at infinity can be shown as,

lim
B(t)→∞ Q′

2D(t) ≡
(

f

cosθ
, 0

)
= Ox (5)

With the origin as Ox, the 1-D coordinate system of the above
projection is the distance between Ox and Q’2D(t), i.e.

Q′
1D(t) = G f

cosθ(B(t)cosθ + Gsinθ)
(6)

Differentiating the inverse of the projection with respect to
time t results in,

d

dt

1

Q′
1D(t)

= cos2θ

G f

d

dt
B(t) (7)

Fig. 9. Finding Q∞ using lane marking and vanishing point.

Assuming the vehicle is travelling at a constant velocity V,
we can write the above equation as a constant C.

d

dt

1

Q′
1D(t)

= V cos2θ

G f
= C (8)

It is observed from equation (8), the inverse of Q’1D(t)
varies with time in a linear fashion. In order to obtain the
1-D coordinate system from the 2-D coordinate system of the
image, we must: First align the 1-D image coordinate along
the y-axis of the 2-D coordinate system. Second, the origin of
the 1-D coordinate system Ox is at infinity for the projection
of the line as shown in Fig. 9.

Q’1D(t) = Q’2D(t)(y) - Q∞, where Q∞ is the y-coordinate of
the image projection of the line at the infinity. Fig. 9 shows
an illustration of how Q∞ can be found using the vanishing
point of the parallel lane markings.

Based on equation (8), we define a constant Cvehicle which is

assumed not to change for a given video as Cvehicle = V cos2θ

f
.

Equation (8) can be written in discrete form as,

1

j − i

(
1

Tj
− 1

Ti

)
= Cvehicle

G
(9)

In equation (9) Ti and Tj are the tracked locations for a given
feature in frames i and j. We can estimate the height G of
a feature by solving the above equation. It should be noted
that, although we know the camera focal length f, depression
angle θ and height h are constants, the velocity V of each
vehicle is different. We solve this problem by tracking the side
shadow cast by the vehicle. We assume that the side shadow
and vehicle travel with the same velocity V.

Let the tracked locations of the side shadow be Zi and Zj

in frames i and j, respectively. The shadow is assumed to be
present on the ground plane and hence the distance between
the camera and any point on the side shadow should be equal
to the height at which the camera is placed, i.e. G = h.
So equation (9) becomes,

h

j − i

(
1

Z j
− 1

Zi

)
= V cos2θ

f
(10)

After solving equation (10) for the velocity V, the height of
the tracked features on the vehicle can be computed. Let the
location of the tracked vehicle features be Xi and Xj in frames i
and j, respectively. Solving for the unknown G, the height of
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the feature H can be estimated as,

H = h − G = (h − Cvehicle)

(
1

X j
− 1

Xi

)−1

(11)

• Physical Feature Extraction: We estimate the height of
the features with respect to the ground plane by detecting the
locations of these features in successive frames (Xi and Xj) and
substituting these locations into equation (11). After obtaining
the heights, we compute the distance between the bottom edge
of the license plate and rear bumper and we call it as the
license plate-to-rear bumper distance. Similarly, we estimate
the Visual Rear Ground Clearance (VRGC) which is the height
of the bottom edge of the rear bumper from the ground plane.
The height of the vehicle is found by estimating the height of
the top most dominant horizontal edge of the ROI.

C. Visual Feature Extraction Using Deep Learning

We extract the visual features using Convolutional
Neural Networks (CNN). In the recent years, CNNs have
showed promising results for the task of vehicle classifica-
tion [26]– [28]. We train the recent CNN architectures pro-
posed by [29]– [32] to classify the vehicles from their rear
view images into the four classes namely: Sedan, Minivan,
SUV and Pickup truck.

The network takes as input the ROI after removing the
rear and side shadows and we resize the ROI to a size
of 224x224. We did random hyper parameter search to obtain
the best hyper parameters for each network. The networks
were trained using a mini batch size of 128 and learning rate
annealing is done if the validation accuracy does not increase
after 3 epochs. To prevent the networks from over-fitting we
performed early stopping. Batch normalization is performed to
get faster training convergence. Rectified Linear units (ReLu)
are used as non-linearities and the network was trained to
minimize the cross entropy loss function. We used a Softmax
after the final fully connected layer. After training the network,
the Visual/Appearance features are extracted from the fully
connected layer before the softmax layer.

• Data Augmentation and Transfer Learning: In order
to augment the size of the dataset, we randomly horizontally
flipped the images and performed color jittering [29] during
the training. Furthermore, since the size of our dataset is very
limited, we performed transfer learning where all the networks
were initialized by pre-training the networks on the MIO-TCD
dataset [33]. The MIO-TCD dataset consists of approximately
650,000 images of vehicles distributed into 11 different classes
taken from real-world traffic surveillance cameras across the
USA and Canada.

The dataset, hyper-parameters and classification results for
the individual networks are explained in detail in Section IV.

IV. EXPERIMENTAL RESULTS

The proposed approach was evaluated on a dataset con-
sisting of 1,831 rear view videos of vehicles from three
different datasets. The vehicle classes in the datasets are sedan,
minivan, SUV and pickup truck. We evaluated the extracted
physical and visual features both individually and after fusing

them together. The dataset was collected during the day time
with good illumination. To the best of our knowledge the
only other datasets that have night time images are the BIT-
Vehicle [12] and MIO-TCD [33] datasets. The BIT-Vehicle
dataset has 9,850 frontal view images out of which only
10% are night time images. The MIO-TCD dataset consists
of 650,000 multi-view images of vehicles distributed into
11 different classes taken form real-world traffic surveillance
cameras. Both of these datasets have night time images with
very high illumination and contrast. Since neither of these
datasets have the geometric parameters of the cameras, they
cannot be directly used in our approach. Moreover, since the
MIO-TCD dataset is very diverse with images of vehicles
captured from different angles, we use this dataset to pre-train
the CNNs and then fine tune the CNNs on our dataset.

A. Dataset, Ground-truth and Parameters

Dataset 1 consists of 876 vehicles (309 sedans, 259 SUVs,
119 minivans and 189 pickup trucks), Dataset 2 consists
of 896 vehicles (321 sedans, 266 SUVs, 130 minivans and
179 pickup trucks) and Dataset 3 consists of 59 vehicles
(35 sedans, 11 SUVs, 4 minivans and 9 pickup trucks). For
Dataset 1 and Dataset 2, the camera was installed at a height
of 22 feet, with a depression angle of 8◦ and focal length
of 80mm. The images in Dataset 1 and Dataset 2 were captured
during different times (morning to late evening) of the day
on different days. To prove the robustness of our approach
we installed a different camera at a height of 10 feet, with
a depression angle of 14◦ and focal length of 50mm in
front of the Bourns College of Engineering main building at
UC-Riverside and the data was collected during 7:30 A.M -
9:00 A.M, 12:00 P.M - 1:00 P.M, 2:30 P.M - 4:00 P.M and
6:00 P.M - 6:30 P.M. It consists of 35 sedans, 11 SUVs,
4 minivans and 9 pickup trucks. All the videos in Dataset 1,
Dataset 2 and Dataset 3 were recorded at 30 frames per second.
It should be noted that the height and depression angle for the
camera should be chosen such that, only the rear view of the
vehicle is visible and not the bonnet/hood of the vehicle.

The ground-truth class labeling for each vehicle was done
manually by two vehicle recognition researchers by examining
the videos of all the vehicles. The parameters of the proposed
system are shown in Table II. They were kept constant for all
the datasets.

B. Performance Measures for Processing the ROI

We measure the performance of algorithms for predicting
the axis of symmetry, license plate region, the curvature of
the tire and the top most dominant horizontal edge. In order
to measure the performance we manually annotated 100 ran-
domly chosen vehicles (25 from each class).

1) Detecting the Moving Vehicle and Shadow: We detected
the moving vehicle using the adaptive Gaussian background
subtraction. The output of this is the binary mask of the vehicle
along with its shadow. We evaluated the performance of our
approach using the Intersection Over Union (IOU) between
the ground-truth and predicted mask. We achieved an average
IOU of 0.84 ± 0.13.
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TABLE II

PARAMETERS OF THE PHYSICAL FEATURES

2) Predicting the Axis of Symmetry: The output of the
symmetry detection algorithm is the center column of the
ROI. We measure the performance by computing the error as
the difference in pixels between the ground-truth and the pre-
dicted column. We achieved an average error of 1.93 ± 2.14
pixels.

3) Localizing the License Plate: We measure the per-
formance of the license plate detection by measuring the
IOU between the ground-truth and the predicted region.
We achieved an average IOU of 0.86 ± 0.15. Moreover, our
approach does not require the entire license plate region to be
detected. Instead it requires the bottom edge of the license
plate (row), in order to compute the distance between the
bottom edge of the license plate and rear bumper. Based on
this we measure the performance by computing the error in
pixels between the ground-truth and predicted bottom edge.
We achieved an average error of 3.41 ± 0.82 pixels.

4) Predicting the Curvature of the Tire: The output of
this algorithm is the bottom most row of the tire that is
touching the road plane. The performance of our approach is
measured by computing the error as the difference between the
ground-truth and the predicted row. We achieved an error of
2.82 ± 1.93 pixels.

5) Predicting the TOP MOST Dominant Horizontal Edge:
In our approach we assume the top most dominant horizontal
edge (row) of the ROI is guaranteed to represent the row
corresponding to the height of the vehicle. We evaluate the
performance by computing the error as the difference between
the ground-truth and the predicted row. We achieved an error
of 2.14 ± 1.02 pixels.

TABLE III

CONFUSION MATRIX FOR DATASET 1 AND DATASET 2

TABLE IV

CONFUSION MATRIX FOR DATASET 3

C. Experiments and Analysis for the Physical Features

The physical features (VRGC, height of the vehicle and
license plate to rear bumper distance) are classified into
the four classes using the C4.5 binary tree algorithm. This
algorithm was found to be the best classifier for our system
for the following reasons:

• There are only four output classes.
• The output classes are linearly separable.
• The dimensions of our feature space is three, which

makes it easy to interpret the decision tree.
We trained and tested our binary tree classifier using the
K- fold cross validation with K selected as 10.

1) Confusion Matrices: We used Dataset 1 and Dataset 2
for training and evaluating our approach. In order to show the
robustness of our approach, we used Dataset 3 as an exclusive
dataset for evaluating our approach which was collected at
a different location and time compared to Dataset 1 and
Dataset 2. Table III shows the confusion matrix for the 10 fold
cross validation using Dataset 1 and Dataset 2.

From Table III, it can be seen that our rear view classifica-
tion system using the physical features achieved an accuracy
of 92.89% and false alarm of 3.68% for Dataset 1 and
Dataset 2 combined. Out of 525 SUVs, 22 were misclassified
as sedan because the height and VRGC features were under-
estimated and out of 630 sedans 18 were misclassified as
SUV because the height and VRGC were over-estimated. The
key reason for this was that the bottom of the rear bumper
and the top most horizontal edge were misidentified because
of poor illumination conditions. 19 SUV’s were misclassified
as pickup trucks because certain models of SUVs have their
license plate located close to the bumper.

To evaluate our approach on Dataset 3, the correctly clas-
sified vehicles of Dataset 1 and Dataset 2 were combined
together as the training set to build the model for classification
and we used Dataset 3 as the unseen test data. The confusion
matrix of the results is shown in Table IV. The system achieved
a classification accuracy of 93.22% and false alarm of 3.39%.
Only 1 SUV was misclassified as a sedan and 2 sedans were
misclassified as SUVs and 1 sedan was misclassified as a
minivan.

2) Consistency of the Results: To show that the esti-
mated physical features are consistent, we tested our system
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TABLE V

COMPARISON OF THE GROUND-TRUTH WITH THE COMPUTED PHYSICAL FEATURES

TABLE VI

STATISTICS OF MULTI-FRAME ANALYSIS USING DIFFERENT NUMBER OF FRAMES

on 20 vehicles from four different vehicle models namely:
Chevrolet Impala (Sedan), Honda CR-V (SUV), Toyota Tun-
dra (Pickup truck) and Honda Odyssey (Minivan). Table V
shows the comparison of the average VRGC, average height
and average license plate to rear bumper distance (the average
is taken over five different colored vehicles of each vehi-
cle model) for the four vehicle models with their respec-
tive ground-truth. The ground-truth VRGC and ground-truth
license plate to rear bumper distance for the 20 vehicles were
obtained manually by measuring the distance by hand using an
inch tape. The ground-truth height for the vehicle was obtained
from the website edmunds.com.

3) Statistics of the Multi-frame Analysis: We tested the
proposed multi-frame analysis algorithm for computing
the physical features using different number of frames for
the above mentioned 20 vehicles. Table VI shows the aver-
age and standard deviation of the physical features of the
20 vehicles using 2, 3, 4 and 5 frames for tracking. The
overall results obtained by using 4 frames had lower error
percentage and standard deviation with respect to the ground-
truth. In Table VI, it can be observed that most of the predicted
measurements were overestimated compared with the ground-
truth. We observed that as the size of the ROI decreased
from frame to frame, some of the tracked points in successive
frames were predicted to be a few rows below the actual row.
This means that the ground plane is estimated to be lower
than the actual value leading to an over estimation in measure-
ments. This is more evident in Table VI when the number of
frames = 5, the measurements are even more over estimated
compared to when number of frames = 4.

Fig. 10. Cloud point representation of the physical features.

4) Visualization of the Physical Features and their
Statistics: Fig. 10 shows the cloud point representation of the
physical features for 50 randomly chosen correctly classified
vehicles of each class. Sedans are marked in red, minivans are
marked in black, SUVs are marked in green and pickup trucks
are marked in blue.

It can be observed from Fig. 10 that there is not much
overlap in the feature space among the vehicle classes and
they are linearly separable. From this we conclude that sedans
and minivans have low VRGC, sedans have the lowest height
compared to the other classes and pickup trucks have the least
license plate to rear bumper distance.
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Fig. 11. Normalized pattern feature matrix. The scale is shown as color on
the right side of the figure.

TABLE VII

STATISTICS OF THE COMPUTED PHYSICAL FEATURES

Fig. 11 shows the normalized pattern feature matrix of the
computed physical features for all the four classes. It can be
observed from Fig. 11 that sedan and minivan have lower
VRGC compared to SUV and pickup truck because the rear
bumpers of sedan and minivan are much closer to the ground
surface. Sedan has the minimum height compared to SUV,
minivan and pickup truck. Pickup truck has the least license
plate to rear bumper distance.

Table VII shows the computed average and standard devi-
ation of the three features for all the 1,831 vehicles. The
standard deviation of the license plate to rear bumper distance
for pickup trucks was less compared to the standard deviation
for SUV, sedan and minivan because the license plate for
SUV, sedan and minivan can be located anywhere on the rear
surface, whereas for pickup trucks the license plate is mostly
located on the rear bumper.

D. Visual/Appearance Features

In this section we classify the vehicles based on their visual
appearance. We used the state-of-the-art Convolutional Neural
Network architectures namely: Alexnet [29], ResNet [30],
VGG [31] and DenseNet [32]. The ROI of the vehicles after
removing the side and rear shadow were used as input images
for training the respective CNNs. We used Dataset 1 and
Dataset 2 together consisting of 1,772 vehicles for training
and evaluating the networks. The dataset was partitioned such
that, from the combined data we used 60% of each class for
training, 10% for validation and 30% for testing. We used
Dataset 3 as an exclusive dataset for evaluating the networks,
as this dataset was collected in a different environment with

TABLE VIII

BEST HYPER-PARAMETERS FOR DIFFERENT CNNS

TABLE IX

AVERAGE CLASSIFICATION ACCURACY OF THE RESPECTIVE

CNNS ON DATASET 1 AND DATASET 2 COMBINED

a different geometrical setup of the camera as compared with
Dataset 1 and Dataset 2 which were obtained in two different
states with cameras mounted on highways.

We trained all the networks using a mini-batch size of 128.
Learning rate annealing is done by a factor of 2, if the vali-
dation accuracy does not increase after 3 epochs. We used the
stochastic gradient descent algorithm to minimize the weighted
cross entropy loss function [29]. To prevent the network from
over-fitting we performed early stopping. We stop the training,
if the validation accuracy did not increase after 3 consec-
utive epochs. We used a Softmax after the fully connected
layer. After training the respective networks, we extracted the
features from the fully connected layer before the softmax.
We call the extracted feature set from the CNN as the Visual
features.

1) Hyper-parameters for Different CNNs: Table VIII shows
the best hyper-parameters used for training the different CNNs.
The best hyper-parameters were found by doing a random
hyper-parameter search that gives us the best accuracy on the
validation data after the first 3 epochs.

2) Performance of Different CNNs: We performed 3-fold
cross validation using each CNN and the average accuracy is
taken as the final classification accuracy. Table IX shows the
average classification accuracy and standard deviation for each
network. In Table IX, VGG16 achieved the highest average
classification accuracy. Table X shows the confusion matrix
obtained using VGG16.

From Table X, we can observe that 33 SUVs were mis-
classified as minivans and 24 minivans were misclassified
as SUVs. This suggests that SUVs and minivans do have
a similar visual appearance from the rear view. Comparing
Table III and Table X, we observed that 3 SUVs were
commonly misclassified as pickup trucks, and 4 minivans were
commonly misclassified as SUVs. We further evaluated the
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TABLE X

CONFUSION MATRIX FOR VGG16 EVALUATED
ON DATASET 1 AND DATASET 2 COMBINED

TABLE XI

EVALUATION OF THE NETWORKS ON DATASET 3

TABLE XII

CONFUSION MATRIX FOR VGG16 EVALUATED ON DATASET 3

trained networks in Table IX on Dataset 3 which has never
been seen by the respective networks. Table XI shows the
classification accuracy of the networks on Dataset 3.

In Table XI, VGG16 achieved the highest classification
accuracy on Dataset 3, which was collected in a different
environment and at different intervals of the day compared
to Dataset 1 and Dataset 2. This shows that VGG16 was the
most generalizable out of all the networks. Table XII shows
the confusion matrix for VGG16 evaluated on Dataset 3.

On comparing the evaluation of the physical and visual
features on Dataset 3 from Table IV and Table XII respectively,
it should be noted that physical features was able to classify
SUVs and minivans better than the visual features, whereas the
visual features were able to classify pickup trucks and sedans
with a relatively higher classification accuracy. This shows that
the CNN was able to learn some visual features that can be
considered as complementary features to the physical features.
We also observed that there was 1 SUV that was commonly
misclassified as a sedan.

3) Rear View Perspective Versus Every Other Perspective:
To further corroborate our claim that SUVs and minivans look
visually similar from the rear view, we trained the networks
mentioned above on images of SUV, minivan, pickup truck
and sedan collected from all possible perspectives except the
rear view. The images were collected from the Imagenet
dataset [34] and MIO-TCD dataset resulting in 7,358 SUV,
9,564 sedan, 7,293 pickup truck and 7,098 minivan images.
After training the networks, we evaluated them on our rear
view dataset consisting of 1,831 vehicles. We call this as the
cross-perspective evaluation. All the networks were initialized

TABLE XIII

CROSS-PERSPECTIVE EVALUATION OF THE NETWORKS

TABLE XIV

AVERAGE CLASSIFICATION ACCURACY OF THE FUSED

FEATURES ON DATASET 1 AND DATASET 2 COMBINED

TABLE XV

CONFUSION MATRIX OBTAINED BY FUSING VGG16 AND
THE PHYSICAL FEATURES EVALUATED ON DATASET 3

with the uniform Xavier initialization. Table XIII shows the
classification accuracy of the individual networks for the cross-
perspective evaluation. From Table XIII it can be observed that
even with sufficiently large amount of images, the respective
networks fell short in the cross-perspective evaluation. This
suggests that some vehicles look visually similar from the rear
view (especially SUV and minivan) and hence we would
need complementary features such as the Visual Rear Ground
Clearance, VRGC, to resolve this problem.

E. Fusing the Physical and Visual Features Using SVM

We evaluated both the physical and visual features by
concatenating the individual feature vectors as input to train
a SVM model. Table XIV shows the classification accuracy
using 3-fold cross validation approach with Dataset 1 and
Dataset 2 combined. It can be seen that the SVM model trained
using VGG16 + physical features achieved the highest average
classification accuracy of 94.81%. Furthermore, we evaluated
this SVM model on Dataset 3 and achieved an accuracy
of 96.61%. Table XV shows the confusion matrix obtained
using visual features of VGG16 and the physical features.

F. Comparison With Other Rear View Classification Methods

Kafai and Bhanu [18] achieved a correct classification
rate of 96.61% using a Hybrid Dynamic Bayesian Network
(HDBN) with low-level features. It should be noted that
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TABLE XVI

COMPARISON OF OUR APPROACH WITH OTHER
REAR VIEW CLASSIFICATION METHODS

these authors evaluated their approach on a different dataset
consisting of 177 rear view videos of vehicles travelling
in front of the Engineering building at UC- Riverside. The
drawbacks of their rear view classification system are:

• The features used for classification were hand-picked and
not computed automatically.

• They could not classify between SUV and minivan. SUV
and minivan was treated as a single category.

• They had a very small dataset of only 177 vehicles.
Furthermore, the authors did not evaluate their approach in
different environments as has been done in this paper.

Thakoor and Bhanu [19] used the structural signatures of
the moving vehicles and SVM classifier to achieve a correct
classification rate of 86.06%. The authors used Dataset 1 and
Dataset 2 that is used in this paper to perform the rear view
classification but could not distinguish between SUV and
minivan. Table. XVI shows a summary of the comparison
between our approach and Thakoor and Bhanu.

All the approaches in Table. XVI were evaluated on
Dataset 1 and Dataset 2 combined. We achieved average
accuracy of 94.81% on Dataset 1 and Dataset 2 (1,772 rear
view videos) which were collected on two different highways
and achieved an accuracy of 96.61% on Dataset 3 (59 rear
view videos) which was collected in front of the Bourns
College of Engineering building at UC- Riverside.

V. CONCLUSION

We presented a vehicle classification system that can clas-
sify vehicles from their rear view using their physical and
visual features. The proposed approach can extract physical
features such as the height of the vehicle and Visual Rear
Ground Clearance (VRGC) in the presence of a good light
source(sunny and dry environmental conditions) on the high-
ways. We showed the importance of the VRGC and how our
approach overcame the problem of classifying between SUV
and minivan, which have similar rear views, as compared to
Kafai and Bhanu [18] and Thakoor and Bhanu [19]. It is
accomplished by estimating the VRGC of a vehicle which
is the most distinguishing feature for SUV and minivan. Our
system achieved a correct classification rate of 93.22% and
91.52% using the physical and visual features, respectively.
We also compared both feature sets and showed that each
feature set can learn some features that are complementary to
each other. We further evaluated our approach by fusing both
the physical and visual features together and achieved a higher
classification accuracy of 94.81%. In the future, we plan to

use the physical and visual features for classification of other
vehicle types.
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